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The Foldy-Lax equation is generalized for a medium that consists of particles with both electric and magnetic
responses. The result is used to compute fields scattered from ensembles of particles. The computational
complexity is reduced by hierarchical clustering techniques to enable simulations with on the order of 1010

particles. With so many particles we are able to see the transition to bulk media behavior of the fields. For
nonmagnetic materials, the observable index, permittivity, and permeability of the effective bulk medium are in
good agreement with the Clausius-Mossotti relation. The fields simulated for particles with both electric and
magnetic responses are in good agreement with new analytical results for a generalized effective medium theory.
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I. INTRODUCTION

Light scattered from large collections of atoms, molecules,
and particles appears to propagate according to the macro-
scopic Maxwell equations with permeability and permittivity
that emerge from the microscopic components of the con-
stituents. Solutions to the scattering problem at the macro-
scopic scale are important to understand how light interacts
with matter and to engineer optical systems. Self-consistent
solutions to the scattering problem at the microscopic scale are
important in understanding strongly interacting systems but
present challenges of computational complexity. Moreover,
techniques developed to date have not provided a means to
include particles which have both electric and magnetic re-
sponses simultaneously. Here we present a multiscale method
that allows us to simulate the scattering of light from collec-
tions of point particles with numbers of the order of 1010 using
modern computer hardware. Moreover, we provide a means
for self-consistent solutions for particles which respond both
to electric and magnetic fields.

The applications of the results presented here include
design of nanostructures [1–10], nanosensing [11,12], lo-
calized surface plasmon resonance spectroscopy [13–20],
surface-enhanced Raman spectroscopy [21,22], atmospheric
science [23–26], and astronomy [27]. Several numerical tech-
niques have been developed to compute the electromagnetic
field scattered from large collections of particles or objects.
One of the most efficient and widely used tools is the T-matrix
approach [28–31], particularly suitable for particles with mor-
phological complexity, with large sizes, or at resonance. The
discrete dipole method can simulate point dipoles interacting
with one another via electric fields [32,33]. The application of
fast algorithms, parallel computing, and approximation meth-
ods has enabled the simulation of numbers of particles on the
order of 109 particles [34,35], whereas in the present work, we
consider ∼1010 particles.

*Corresponding author: scott.carney@rochester.edu

In order to control the numerical complexity in our method,
the particles are clustered, and those clusters are subsequently
aggregated to form larger clusters [36–41]. The scattered
field from each element is calculated via the Foldy-Lax
method [42–44] for finding exact solutions of the field scat-
tered from collections of point particles. In order to extend
the method to particles with magnetic polarizability, we have
found a generalization of the usual Foldy-Lax method. Fi-
nally, we fit plane waves to the computed scattered fields to
infer the macroscopic optical properties of the scatterers from
the numerical results.

The paper is organized as follows. In Sec. II, the usual
Foldy-Lax approach is generalized to include particles with
both electric and magnetic polarizabilities. In Sec. III, we
develop a hierarchical clustering method for solving the
generalized Foldy-Lax method numerically. Finally, the new
method is used to find the macroscopic properties of a large
collection of particles, and future directions and applications
are discussed. The SI system of units is used throughout the
letter.

II. THEORY

A. The Foldy-Lax equation

Let us first consider the standard Foldy-Lax result [42–44]
for the scattering of an electric field from N particles with
the purely electric response. The electric field Ei on the ith
particle consists of the incident field and the field scattered by
all the other particles:

Ei = Einc
i +

N∑
j �=i

Esca
i j . (1)

Here, Einc
i = Einc(ri ) is the incident field, ri is the location of

the ith particle, and Esca
i j is the electric field scattered by the

jth particle at location r j to the location ri. Both the notations
with subscript i and with (ri ) are used in this paper depending
on the situation. A monochromatic field is considered without
loss of generality and a time dependence of e−iωt , where ω is
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the angular frequency of the field, is assumed and suppressed
throughout the paper.

The particles polarized by the electric field are assumed to
be pointlike. The dipole current is thus given by

J(r, ri ) = −iωαe0δ(r − ri )E(ri ). (2)

Here, αe0 denotes the complex-valued bare electric polariz-
ability of a single particle, which includes the self-interaction
Esca

ii [45]. The electric field scattered from a polarized particle
is given by

Esca (r, ri ) =
∫

iωμ0

↔
G(r, r′)J(r′, ri )d

3r′

= ω2μ0

↔
G(r, ri )αe0E(ri ), r �= ri. (3)

Here, μ0 is the magnetic constant, r′ is the location of the
dipole, and r is the observation location. Dyadic Green’s

function
↔
G in free space satisfies the equation

[∇ × ∇ × − k2
0]

↔
G(r, r′) = δ(r − r′) ¯̄I3. (4)

Here, ∇× denotes the curl operator acting on r, k0 = ω
√

ε0μ0

is the free space wave number of the monochromatic field
where ε0 is the electric constant, and ¯̄I3 is an identity tensor.
Although the free-space background is assumed in the pro-
posed theory, a derivation assuming an inhomogeneous back-
ground can be achieved with the appropriate Green function.

Combining Eqs. (1) and (3) gives

Ei = Einc
i + ω2μ0

N∑
j �=i

↔
Gi jαe0E j . (5)

Here,
↔
Gi j is shorthand for

↔
Gi j = ↔

G(ri, r j ). The particles are
taken to be identical. The electric field is then given by

Ē = ( ¯̄I − ¯̄Gαe0)−1Ēinc. (6)

Here, Ē = (E1, E2 . . . EN )T denotes a vector containing all
Ei on N dipoles, while ¯̄G denotes the matrix containing all

ω2μ0

↔
Gi j tensors. The identity matrix ¯̄I is of the same dimen-

sion as ¯̄G.
The Foldy-Lax equation in Eq. (6) provides a means for

computing the field scattered by particles with electric polariz-
abilities, but not magnetic polarizabilities. Atoms, molecules,
and particles can also have magnetic polarizability, and in-
cluding such particles in a Foldy-Lax approach presents
special challenges. A novel approach to overcome these chal-
lenges and provide a solution to the associated generalization
of the Foldy-Lax equation is presented in the following
section.

B. Generalized Foldy-Lax equations

Consider scattering from particles which respond also to
magnetic fields. The magnetic current of the particle polarized
by the magnetic field is given by

M(r, ri ) = iωαm0δ(r − ri )H(ri ). (7)

Here, αm0 denotes the complex-valued bare magnetic polariz-
ability of a particle. The electric and magnetic fields scattered

from a particle are generated by both currents J and M, given
by [46–48]

Esca (r, ri ) =
∫

iωμ0

↔
G(r, r′) · J(r′, ri )d

3r′

+
∫ ↔

G(r, r′) · [∇′ × M(r′, ri )]d
3r′, r �= ri,

(8a)

Hsca (r, ri ) =
∫

−iωε0

↔
G(r, r′) · M(r′, ri )d

3r′

+
∫ ↔

G(r, r′) · [∇′ × J(r′, ri )]d
3r′, r �= ri.

(8b)

Here, ∇′× denotes a curl operator acting on r′. The calcula-
tion of Eq. (8) is complicated by the point-particle assumption,
which forces us to deal with a curl operator on a Dirac delta
function. To deal with singularity introduced, the particle
is diffused into a small volumetric distribution [45,49] with
probability of finding a particle at point r:

P(r, ri ) = 1

(4πD�t )
3
2

exp

(
−‖r − ri‖2

4D�t

)
. (9)

This equation describes a particle indexed by i in Brownian
motion around a location ri diffused for a time �t and diffu-
sivity D [50,51]. Instead of a point, the electric and magnetic
currents are taken to be given by the expected value of all the
currents at randomized locations, given by

J(r, ri ) =
∫

J(r, r′)P(r′, ri )d
3r′ = −iωαeP(r, ri )E(r),

M(r, ri ) =
∫

M(r, r′)P(r′, ri )d
3r′ = iωαmP(r, ri )H(r),

(10)

which are continuous and have a well-defined value of the
curl. Here the overline denotes averaging on all the possi-
ble configurations of the particle locations. Here, αe and αm

are renormalized polarizabilities taking the “dipole fluctua-
tion” [52] into account, see Appendix A for details.

The averaged currents in Eq. (10) are justified as follows.
An actual measurement of an optical observable such as the
Poynting vector can be calculated by its time average. Assum-
ing ergodicity, the time average is replaced by an ensemble
average [53]. The latter is decomposed into a coherent flux
Scoh(r) = Re[E(r) × H∗(r)]/2 and an incoherent part given
by Eq. (14) in Ref. [54]. Here the coherent field E(r) is cal-
culated by averaging over all configurations [55] and H(r) is
the magnetic analog. The coherent electromagnetic fields are
generated by the configuration-averaged electric and magnetic
currents, with the configuration and time-independent Green
function.

The electric and magnetic fields scattered by the currents
in Eq. (10) are likewise taken to be the expected value of
the electric and magnetic fields averaged over the ensemble
of particles in Brownian motion. The currents induced on a
fixed particle, given in Eq. (2) and Eq. (7), are recovered by
Eq. (10) in the

√
2D�t → 0 limit. That is, the field scat-

tered by a particle moving during an infinitesimal time is
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considered the same as the field scattered by a motionless
particle.

The currents appearing in Eq. (8) are replaced with their
averaged values given in Eq. (10) and summed over all
particles:

J(r) =
N∑

i=1

J(r, ri ) = −iωαe

N∑
i=1

P(r, ri )E(r),

M(r) =
N∑

i=1

M(r, ri ) = iωαm

N∑
i=1

P(r, ri )H(r). (11)

Equation (8) then becomes

E(r) = Einc(r) + −
∫

(iωμ0

↔
G(r, r′)J(r′)

+ ↔
G(r, r′) · [∇′ × M(r′)])d3r′, (12a)

H(r) = Hinc(r) + −
∫

(−iωε0

↔
G(r, r′)M(r′)

+ ↔
G(r, r′) · [∇′ × J(r′)])d3r′. (12b)

The equation above is the generalized Foldy-Lax equation,
for the first time to the best of our knowledge, to take the
crossterms into consideration, which couples the electric and
magnetic responses of the particles. Eq. (12) much like the
Foldy-Lax Eq. (5) can be solved self-consistently so that the
solution is exact and contains all orders of scattering. Here
the integral −

∫
. . . d3r′ denotes the so-called principal volume

integral [56]. A detailed justification of solving the averaged
field self-consistently and of the application of the principal
volume can be found in Appendix A.

C. Iterative solution of the generalized Foldy-Lax equation

In order to self-consistently solve Eq. (12), we have to
be able to calculate the curls of the currents ∇ × J(r) and
∇ × M(r). To simplify the calculation of the curl, we make
use of the knowledge that system consists of a large number
of particles with a plane wave incident from the exterior.
The field in the region of the particles will behave as if the
particles form a continuous medium and so if the particles
are confined to a half-space and the incident field is a plane
wave, we anticipate that the field can be approximated as a
plane wave. Under these assumptions, we calculate the curls
by discretization on a cubic grid. At the center of the voxel I ,
the electric and magnetic fields E and H are denoted EI and HI

and Green’s function
↔
G(rI , rJ ) is denoted

↔
GIJ , so that Eq. (12)

may be written in discretized form (the detailed derivation can
be found in Appendix B):

EI = Einc
I + k2

0

∑
J �=I

↔
GIJ

[
ραe

ε0
+ ραmn

ημ0

]
EJ�V, (13a)

HI = Hinc
I + k2

0

∑
J �=I

↔
GIJ

[
ραm

μ0
+ ραeηn

ε0

]
HJ�V, (13b)

where ρ is the volume number density of the particles. The
refractive index n is the ratio between the wave number of
the plane wave that propagates in the medium and the wave
number of the same wave but propagating in the free space,

TABLE I. The structures, indices, and parameters in different
levels.

level structure index size parameters

0 diffused particle i
√

2D�t
1 small voxel I �L1 × �L1 × �L1

2 larger voxel I �L2 × �L2 × �L2

3 column I �L2 × �L2 × L

whereas η is the ratio given by x component of E by the y com-
ponent of H, η = E/(η0H ), where η0 = √

μ0/ε0. The second
terms in the square brackets in Eqs. (13a) and (13b) containing
η correspond to the electric field generated by the magnetic
response of the particles and the magnetic field generated by
the electric response of the particles, respectively.

Equation (13) are redundant, only one needs to be solved.
Thus the terms in the braces [. . . ] in Eqs. (13a) and (13b) are
equivalent:

αe

ε0
+ αmn

ημ0
= αm

μ0
+ αeηn

ε0
, (14)

which is solved to find

η =
η2

0αe − αm ±
√(

αm − η2
0αe

)2 + 4αeαmn2η2
0

2η2
0αen

. (15)

The ± should be chosen to be the sign of Re(η2
0αe + αm). The

algorithm converges to n = η = 1 if the wrong sign is chosen.
With η given by Eq. (15), Eq. (13b) may be seen to be

redundant. Equation (13a) requires the refractive index n,
which may be extracted from the calculated field distribution
by

n ≈ arg(EI+1) − arg(EI )

k0�z
. (16)

Here the indices I + 1 and I denote neighboring voxels ar-
ranged along the wave propagation direction and �z is the
distance between their centers.

We propose an iterative algorithm for the calculation of E
and n. The electric field is calculated by Eq. (13a) with an
initial guess of refractive index n(0). Then a new refractive
index n(1) is calculated from the electric field by Eq. (16),
and n(1) is subsequently used in Eq. (13a) to again calculate
the electric field. This process is repeated until we reach
the convergence criterion in the K th iteration, |n(K ) − n(K −
1)|/|n(K − 1)| < σ . The user-defined value of σ varies de-
pending on specific applications, which is chosen to be 0.1%
in this paper. This is discussed in Fig. 3 and below.

D. Hierarchical clustering technique

The analytic description of an infinite number of particles
in a semi-infinite half-space given above provides a means for
calculating the effective refractive index, however numerics
must be carried out over a finite number of particles, and so
we confine our attention to a finite-sized box as described
below. The simulation region is taken to be a cube shown
in Fig. 1(a). The N particles are diffused into volumetric
currents as described in Sec. II B. The diffusion of a single
particle is illustrated in Fig. 1(b). Although solving the inter-
action of N particles is a challenge, the hierarchical clustering
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FIG. 1. The simulation model of the diffused-particle method.
(a) A total number of N particles labeled i with an electric and a mag-
netic response are randomly distributed within the simulation box.
The particles are clustered into lv1 voxels labeled I and lv2 voxels
labeled I, which are further clustered into lv3 columns labeled I,
see table I for details. The effective refractive index of the composed
medium is extracted from the simulated electric field demonstrated
in the middle plane of the simulation region. (b) Each particle being
a lv0 scattering unit is diffused.

method, with the concept inspired by works in other research
fields [36,37,57–62], reduces the computational complexity
from O(N3) to O(N3

top), where Ntop is the number of top level
structures. With a diagram given in Fig. 2, the calculations

FIG. 2. The diagram of calculating MIJ describing the interac-
tion between columns.

are performed in four levels: at level 0 (lv0), fields scattered
from individual particles are calculated; at level 1 (lv1) parti-
cles are clustered into cubes with homogeneous permittivity
and permeability such that the field scattered from that cube
matches the field scattered from lv0 particles within a cube in
a minimum �2-norm error sense; at level 2 (lv2), the cubes are
clustered into larger cubes treated as homogeneous so the field
scattered from a lv2 voxel is equivalent to the field scattered
from all the lv1 voxels within the lv2 voxel; at level 3 (lv3), the
lv2 voxels are clustered into columns, which again are treated
as homogeneous, and fields scattered from these columns are
calculated. The side length of the lv2 voxel is equivalent to the
cross-section side length of the lv3 column. The structures,
indices, and parameters of the four levels are summarized in
Table. 1. The fields scattered by individual particles, that is
the calculation at lv0, are described by Eq. (12). The lv1 and
lv2 fields, those are fields scattered by the cubes, are given
by Eq. (13a). The lv3 fields, those are fields scattered by the
columns, are given by

EI = E inc
I + k2

0

N3∑
J=1

MIJ

[
ραe

ε0
+ ραmn

ημ0

]
EJ�S2. (17)

Here, �S2 = (�L2)2 denotes the area of the lv3 column on
the yz plane, where �L2 is the side length of a lv2 voxel,
and MIJ represents the resummed discretized Green func-
tion for scattering from column J to column I at lv3 of a
clustering procedure. We assume that near the center of the
simulation volume the field propagating in the medium is, to
a good approximation, plane-wave-like, see Fig. 1(a). With
this assumption and the medium being isotropic, only the xx
component of MI,J needs to be calculated for the incident
field polarized along x̂ direction, as then the field propagating
in the medium must also be polarized along x̂ direction. Thus,
we see the benefit of the clustering approach: a problem set in
three spatial dimensions in Eq. (13a) is reduced to a problem
set in two spatial dimensions in Eq. (17).

The calculation of MIJ is carried out in two different
ways, with the diagram given in Fig. 2. The choice of which
technique to use depends on the distance |R| = |rI − rJ |. The
limit between the near field, |R| � dF, and far field, |R| > dF,
is denoted as dF. The value of dF can be pre-calculated as
described in Appendix C. In the near field region, where
the fine mesh is required, the calculation of MIJ takes the
lv0-lv1-lv3 hierarchical clustering procedure, while in the far
field region, where the coarse approach is applicable, lv0-lv1-
lv2-lv3 clustering is used:

MIJ =
⎧⎨
⎩

∑
J [

↔
G(rI, rJ )]xx

�V1
�S2

, |R| � dF,∑
J [

↔
G(rI, rJ )]xx�L2, |R| > dF,

(18a)

(18b)

where

[
↔
G(r, rJ )]xx�V2 ≈

∑
J

[
↔
G(r, rJ )]xx�V1. (19)

Here J , the index of a lv1 voxel, ranges over all possible values
within the lv2 voxels labeled by the index J , which runs over
all possible values within the lv3 column labeled by J . The
volume of a lv1 voxel is given by �V1 = (�L1)3, where �L1

is the side length of a lv1 voxel. Introducing the lv2 voxels

115418-4



CLUSTERING DIFFUSED-PARTICLE METHOD FOR … PHYSICAL REVIEW B 104, 115418 (2021)

reduces computational complexity by reducing the number of
scatterers interacting with each other.

III. RESULTS AND DISCUSSION

A. Simulated field and refractive index

In order to calculate the effective refractive index from
Eq. (16), we need to simulate the scattered field in a cubic
volume large enough so that in a region near the center of a
cube the field behaves as if it propagates in a semi-infinite
medium. On the other hand, the numerical complexity scales
as L6 where L is a cube length, given the same discretization
of the simulation region, i.e., the size of the lv1 voxel. The size
of the cubic simulation volume in Fig. 1 is selected to balance
the accuracy and complexity of the calculation. By repeated
numerical experimentation, we found that a cube with a size
of L = 4.2λ on a side allows us to calculate the effective
refractive index while running a reasonable time (< 1 hours
on a 2.3GHz Intel Core i5 CPU), where λ is the wavelength of
the field in free space. The total number of particles is chosen
to be N = 4 × 1010, which corresponds to the atomic density
of silicon for λ = 221 nm at a temperature of 300 K and under
a pressure of 1 atm.

The size of lv1 and lv2 voxels is determined as follows. The
scattered field arises from the interaction of particles and the
propagating field. The rapid variation of the susceptibilities
can be ignored while the size of the voxels should be of
the scale of the variations of the propagating field. So the
side length of a lv1 voxel should be much smaller than the
wavelength of the field propagating in the medium (i.e., less
than 0.01λ/n). Here we specifically assign the side length of
a lv1 voxel as 0.0015λ. The side length of the lv2 voxel is
chosen to be 0.03λ, justified by Fig. 9 in Appendix D. Indeed,
increasing the size of the lv2 voxel to include more lv1 voxel
reduces complexity. However, the error of the lv1-lv2 clus-
tering procedure, plotted in Fig. 9, also increases, because of
the nontrivial higher order of the multipole components of the
voxel [63–65]. Thus the size of the lv2 voxel is limited for the
purpose of the accuracy of the calculation. Given this size and
the concentration chosen, each lv2 voxel comprises 14 600
particles. The N2 = 2.74 × 106 lv2 voxels at locations speci-
fied by coordinates y and z are clustered into N3 = 1.96 × 104

columns, each consisting of 140 lv2 voxels. The interaction
matrix elements between columns, MIJ is calculated as shown
in the flow chart, Fig. 2. Much like Green’s function in free
space, MIJ depends only on geometry and wavelength in free
space, not on the refractive index or impedance. With MIJ

pre-calculated for our chosen hierarchical clustering process,1

the effective refractive index and the electric field distribution
in the simulation region are calculated using the iteration
scheme given in Fig. 3.

With a goal in mind to find a material with an effec-
tive refractive index with a real part of 2, we take the
particles polarizabilities to be αe = (1.41 × 10−9 + 1.31 ×
10−10i)λ3ε0 and αm = (5.62 × 10−10 + 1.78 × 10−11i)λ3μ0,

1The operator M is a Toeplitz matrix if a hexahedron mesh is used
in the simulation. Taking advantage of the fact that the elements are
repeated saves both RAM and CPU time.

FIG. 3. The diagram of the iterative solution of the generalized
Foldy-Lax equation. With an initial guess n(0), the electric field is
calculated by the Foldy-Lax equation in lv3, Eq. (17). A new value
of the refractive index n(K ) in the K th iteration is calculated by
Eq. (16), which is compared with the value from the last iteration
until their difference is smaller than the threshold.

starting from these values of polarizabilities, we can calculate
the effective refractive index and the electric field distribution
throughout the simulation region. To start the iteration pro-
cess, the initial guess of the refractive index is taken to be
the same as the free space, n(0) = 1. The convergence crite-
rion, |n(K ) − n(K − 1)|/|n(K − 1)| < 0.1%, is met in the 9th
iteration, with the resultant refractive index 2.0 + 0.2i. The
simulated electric field in the last iteration is shown in the
middle plane in Fig. 1(a). It may be observed that this electric
field is a superposition of the ideal plane wave to which we
fit to calculate the index of refraction plus the deviations from
that ideal field generated by the boundaries.

Though the electric field and the refractive index have
been acquired, the validity of Eq. (16) used to calculate
the refractive index must be checked post hoc. Figure 4
shows the deviation from the ideal plane wave used to fit the
field and extract the index. We see that in the region used
to calculate the refractive index the plane wave dominates
in the sense that 〈|arg(Eplane ) − arg(E simu)|/arg(Eplane )〉 <

0.1%, where the 〈. . . 〉 denotes averaging throughout the
rectangle. The error of calculating the refractive index with
Eq. (16) is thus limited to less than 0.2%.

B. Comparing the numerical and analytical results

Having established self-consistency, let us here compare
the results of our diffused particle method with well-known
results from the Clausius-Mossotti relation [66–71], that is we
hold the magnetic polarizability to be zero so that the usual

115418-5



WANG, RASSKAZOV, AND CARNEY PHYSICAL REVIEW B 104, 115418 (2021)

FIG. 4. (a) The simulated scattered field as described in the text,
(b) the ideal plane wave used to fit (c) the computed field in the
0.6λ × 0.3λ region marked with black dotted-line rectangle in (a).
(d) The difference between the simulated total field and the plane
wave with the color bar scaled by 0.01.

Clausius-Mossotti relation applies. We apply procedures as
described above. The particles are chosen to be lossy, with
polarizability Im(αm ) = 0.1Re(η2

0αe ). With αm = 0, the term
proportional to the curl of magnetic currents in Eq. (12) van-
ishes. As may be seen in Fig. 5(a), the simulated permittivity
agrees well with the theoretical result given by the Clausius-
Mossotti relation,

ραe

3ε0
= ε − 1

ε + 2
. (20)

Then the diffused particle method is used to calculate
the effective refractive index of the medium comprising par-
ticles responding to both electric and magnetic field, with
αe = (5.55 × 10−9 + 5.55 × 10−10i)λ3ε0 and αm = (5.55 ×
10−10 + 5.55 × 10−11i)λ3μ0. In this case, the generalized
Clausius-Mossotti relation [72] gives 2 different values of the

FIG. 5. (a) The comparison of the theoretical εCMR calculated
from Eq. (20) and simulated permittivity εDPM of an effective
medium composed of particles with pure electric response. (b) The
number of iterations required for convergence of the simulated
refractive index to either branch, n+, or, n−, predicted by the gen-
eralized Clausius-Mossotti relation [72], depending on which side of
the curve the initial value n(0) falls on.

effective refractive index, n+ and n−. The simulated refractive
index in Fig. 5(b) converges to either predicted value depend-
ing on the initial guess n(0). The relative difference between
the theoretical refractive index and the simulated value is less
than 0.2%.

IV. CONCLUSION

Nature rarely produces atoms or molecules with a magnetic
permeability but not never. When electric and magnetic polar-
izabilities co-exist on the same particle, they must naturally
interact. We have for the first time presented a generalized
Foldy-Lax relation for simultaneously electric and magnetic
polarizabilities.

We have presented numerical methods that are used to
calculate the effective permittivity and permeability of a
medium composed of more than 1010 particles with both
electric and magnetic responses simultaneously. Correspond-
ing MATLAB routines, which include the theoretical treatment
reported in this paper, are presented in Ref. [73]. Using this
new method, we have validated analytical results general-
izing the Clausius-Mossotti relation to such materials. At
the heart of this numerical method, a generalized Foldy-Lax
equation is derived to calculate the field distribution among
the particles. The numerical solution is achieved by apply-
ing hierarchical clustering techniques. Macroscopic optical
properties of an effective continuous medium equivalent to
the collection of particles are computed from the numer-
ical results for the field. These macroscopic results agree
well with the analytical results provided by effective medium
theories.

The method used to calculate the effective medium param-
eters from the numerical results depends on an assumption
that the field behaves locally as a plane wave, an assumption
that works well for a lossy medium. Of course, one could
instead compute the field expected for a continuous medium
of the same size and shape as the simulation volume for our
collection of particles and then fit the macroscopic properties
of that medium to the numerical results. This approach is left
to future work and will require another iterative algorithm to
find the local minimum of the cost function [74].

The particle clustering techniques used here to homoge-
nize the medium may fail in certain cases. For example, for
arbitrarily shaped materials or low loss or gain medium, dif-
ferent clustering techniques are suggested [36,37]. Although
materials with randomly distributed particles are chosen for
the calculation in this paper, crystal structures with naturally
periodic discretization can also be calculated by the proposed
method. The process of clustering the particles to a voxel is
unnecessary in a crystal structure, while the rest of the steps
are the same as the random particle distribution case.

A number of intriguing avenues of the investigation re-
main. We have only considered particles with positive real
polarizabilities, but of course particle polarizability with a
negative real part is possible [75–77], and might open a
broader parameter space with more opportunities to find ma-
terials with exotic electromagnetic responses. Nonlinear and
multipolar polarizabilities of the particles are omitted in the
derivation of the generalized Foldy-Lax equation, which is the
subject of further research.
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APPENDIX A: THE VALIDATION OF
SELF-CONSISTENTLY SOLVING THE

CONFIGURATION-AVERAGED FIELDS

In this Appendix, we justify the validity of Eqs. (11)
and (12) as the configuration-averaged currents. To calculate
an averaged current distribution in a medium consisting of
randomly distributed particles, it is common to conduct a
Monte Carlo simulation where the currents are solved in each
configuration of particles locations and then averaged over all
configurations. In this paper, however, a configuration aver-
aging is performed over the currents in Eqs. (11) and (12),
and the averaged currents are then solved self-consistently.
This approach eliminates the calculation of a curl of the singu-
larity introduced by the point-particle assumption in Eqs. (2)
and (7). It also reduces the computational complexity because
the averaged currents are only calculated once in the whole
process. For simplicity, we ignore the magnetic response of
the particles in this Appendix, i.e., αm = 0. The general case
of particles responding to both electric and magnetic fields
follows a similar pattern.

We discretize the space into Nc cells denoted by I indexed
by I ∈ [1, Nc]. We calculate the current at the center of each
cell (the mass center of the cell with a uniform density), rI ,
see Fig. 6. The cells and the centers rI remain the same in
different configurations. The longest distance between rI and
any point in I is denoted by LI , and Lmax ≡ maxI (LI ) is
defined as the maximum rI among all cells. The total electric
current in cell �I obeys the Foldy-Lax equation

JI = Jinc
I + ω2μ0αe0NI

Nc∑
J=1,J �=I

↔
G(rI , rJ ) · JJ , (A1)

where NI denotes the number of dipoles in I , which takes
the value 0 in most cells without a particle inside and the
value 1 with a particle located at rI ∈ I ; Jinc

I = NIαeEinc
I

FIG. 6. An illustration of a cell I centered at rI and a hard
sphere of a dipole. The hard sphere is centered at the dipole located
at rI inside I . LI denotes the longest distance between rI and
any point in I , a is the radius of the hard sphere of a dipole. The
condition λ � a � LI is satisfied in all cases.

is the total current in cell I induced by the incident field.
Following previous simulation methods [53,54], we assume
the particles behave as hard spheres. The self-interaction of
a particle with the field scattered from itself is already taken
into account in the polarizability of the particle, Eq. (2). We
use such a discretization which guarantees Lmax � a, that is
the discretization is much smaller than the size of hard spheres
representing the particles, so, at most, one dipole is found in
each J . Thus we can index the locations of particles rI and
rJ in Eq. (A1) by the index of the cells containing the dipoles
I and J .

To prove that the configuration-averaged currents can be
solved self-consistently, we need to show that the current at
rI (the location of a particle in cell I ) can be approximated

by replacing dyadic Green’s function
↔
G(rI , rJ ) from dipole

to dipole by dyadic Green’s function
↔
G(rI , rJ ) from cell to

cell

JI ≈ Jinc
I + ω2μ0αe0NI

Nc∑
J=1,J �=I

↔
G(rI , rJ ) · JJ , (A2)

with an error under proper control.
The matrix-vector forms of Eqs. (A1) and (A2) are

J̄ = J̄inc + ( ¯̄G + � ¯̄G)J̄, (A3)

J̄ ≈ J̄inc + ¯̄GJ̄. (A4)

Here, J̄ is a vector of vectors denoting the total currents in
all cells, with the Ith vector as JI ; J̄inc denotes the current
induced by the incident fields in all cells, with the Ith vector
as Jinc

J ; ¯̄G denotes an operator of tensors with the IJth tensor

as ω2μ0αe0NJ

↔
G(rI , rJ ); � ¯̄G denotes an operator of tensors

with the IJth tensor given by

� ¯̄GIJ ≡ ω2μ0αe0NJ [
↔
G(rI , rJ ) − ↔

G(rI , rJ )]. (A5)

The error between the exact J̄ calculated by Eq. (A3) and
the approximated J̄ by Eq. (A4) is defined as

�J̄er ≡ ( ¯̄I − ¯̄G − � ¯̄G)−1J̄inc − ( ¯̄I − ¯̄G)−1J̄inc = ¯̄F J̄inc,

(A6)

¯̄F = � ¯̄G + ¯̄G� ¯̄G + � ¯̄G ¯̄G + ¯̄G ¯̄G� ¯̄G + ¯̄G� ¯̄G ¯̄G

+ � ¯̄G ¯̄G ¯̄G + · · · + O[(� ¯̄G)2]. (A7)

The norm of the error current is bounded by

‖�J̄er‖ � ‖ ¯̄F‖‖J̄inc‖. (A8)

Here, ‖ . . . ‖ denotes the 2-norm of the vector when acting on
a vector and denotes the 2-norm of a matrix induced by the
2-norm of a vector when acting on a matrix. The 2-norm of a
matrix is defined as

‖ ¯̄A‖ = sup
x̄ �=0

‖ ¯̄Ax̄‖
‖x̄‖ . (A9)
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The norm of the vector of the currents induced by the incident field is bounded and remains the same when the sizes of cells
decrease. The norm of operator ¯̄F is bounded by

‖ ¯̄F‖ � ‖� ¯̄G‖ + ‖ ¯̄G� ¯̄G‖ + ‖� ¯̄G ¯̄G‖ + ‖ ¯̄G ¯̄G� ¯̄G‖ + ‖ ¯̄G� ¯̄G ¯̄G‖ + ‖� ¯̄G ¯̄G ¯̄G‖ + · · · + ‖O[(� ¯̄G)2]‖ (A10)

� ‖� ¯̄G‖ + 2‖ ¯̄G‖‖� ¯̄G‖ + 3‖ ¯̄G‖‖ ¯̄G‖‖� ¯̄G‖ + · · · + ‖O[(� ¯̄G)2]‖ (A11)

= ‖� ¯̄G‖
(1 − ‖ ¯̄G‖)2

+ ‖O[(� ¯̄G)2]‖. (A12)

We require that ‖ ¯̄G‖ �= 1. The norm of the operator ‖� ¯̄G‖ is bounded by

‖� ¯̄G‖ � ω2μ0αe

∑
I,J

‖� ¯̄GIJ‖

= ω2μ0αe

∑
I,J

‖↔
G(rI , rJ ) − ↔

G(rI , rJ )‖

� ω2μ0αeNd (Nd − 1) max
I,J

(‖↔
G(rI , rJ ) − ↔

G(rI , rJ )‖), (A13)

which is the multiplication of the number of nonzero tensors, Nd (Nd − 1), and the maximum norm of its tensor elements

‖↔
G(rI , rJ ) − ↔

G(rI , rJ )‖.

The norm of the difference between two Green’s tensors ‖↔
G(rI , rJ ) − ↔

G(rI , rJ )‖ is bounded by the following process. The
value of dyadic Green’s function in free space from a source point rJ to an observation point rI is only determined by the
displacement of the two points R ≡ rI − rJ :

↔
G(rI , rJ ) = ↔

G(R) =
[(

1

k0R
+ i

(k0R)2
− 1

(k0R)3

)
¯̄I3 +

(
− 1

k0R
− 3i

(k0R)2
+ 3

(k0R)3

)
R̂ ⊗ R̂

]
k0exp(ik0R)

4π
. (A14)

Here, R̂ ≡ R/R is a unit vector and ⊗ denotes a tensor product. We introduce �R = (rI − rJ ) − R, then
↔
G(rI , rJ ) − ↔

G(rI , rJ )

=
{[

i

k0R
− 2

(k0R)2
− 3i

(k0R)3
+ 3

(k0R)4

]
¯̄I3 +

[
− i

k0R
+ 4

(k0R)2
+ 9i

(k0R)3
− 9

(k0R)4

]
R̂ ⊗ R̂

}
k0exp(ik0R)(k0�R)

4π

+
(

− 1

k0R
− 3i

(k0R)2
+ 3

(k0R)3

)
k0exp(ik0R)

4π

(
�R
R

⊗ R̂ + R̂ ⊗ �R
R

)
+ k0O[(k0�R)2]. (A15)

Since the length of the displacement �R � 2Lmax, the norm of the difference between two Green’s tensors in the equation
above is bounded by

‖↔
G(rI , rJ ) − ↔

G(rI , rJ )‖ �
[

1

k0R
+ 4

(k0R)2
+ 9

(k0R)3
+ 9

(k0R)4

]
k0(k0Lmax)

π
+ k0O[(k0Lmax)2]. (A16)

The length of vector R is longer than the minimal distance between two dipoles, R � 2a. Under this condition, we have

‖↔
G(rI , rJ ) − ↔

G(rI , rJ )‖ �
[

1

2k0a
+ 4

(2k0a)2
+ 9

(2k0a)3
+ 9

(2k0a)4

]
k0(k0Lmax)

π
+ k0O[(k0Lmax)2]. (A17)

for any I and J . Combining Eqs. (A13) and (A17), we have

‖� ¯̄G‖ � ω2μ0αeNd (Nd − 1)

[
1

2k0a
+ 4

(2k0a)2
+ 9

(2k0a)3
+ 9

(2k0a)4

]
k0(k0Lmax)

π
+ ω2μ0αek0O[(k0Lmax)2]. (A18)

‖� ¯̄G‖ can be made arbitrarily small by decreasing k0Lmax.

When k0Lmax → 0, we have ‖� ¯̄G‖ → 0 according to
Eq. (A18), thus ‖ ¯̄F‖ → 0 according to Eq. (A10), thus
‖�J̄er‖ → 0 according to Eq. (A8). The two sides of Eq. (A2)
become equivalent:

JI = Jinc
I + ω2μ0αe0NI

Nc∑
J=1,J �=I

↔
G(rI , rJ ) · JJ . (A19)

Notice that NI JJ �= 0 only if there is a particle in cell I and
another particle in cell J . Since we are using the hard sphere

model, the distance between the two particles is at least 2a.
Thus Eq. (A19) is equivalent to

JI = Jinc
I + ω2μ0αe0NI

Nc∑
J=1,rJ /∈PVI

↔
G(rI , rJ ) · JJ . (A20)

Here PVI is the principal volume used in Eq. (12)
which is a sphere centered at rI with a radius 2a.
We take the expectation values on both sides of
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Eq. (A20):

〈JI〉 = 〈Jinc
I 〉 + ω2μ0αe0

Nc∑
J=1,rJ /∈PVI

↔
G(rI , rJ ) · 〈NI JJ〉

= 〈Jinc
I 〉 + ω2μ0αe0PI

Nc∑
J=1,rJ /∈PVI

↔
G(rI , rJ ) · 〈JJ〉NI =1.

(A21)

Here, 〈JJ〉NI =1 denotes the expectation value of JJ under the
condition that there is a dipole in cell I , i.e., NI = 1, and PI

is the corresponding probability.
The calculation of the conditional expectation 〈JJ〉NI =1 on

the right-hand side (rhs) of Eq. (A21) requires the knowledge
of the probability distribution of the particles in the medium.
Here we apply the diffused particle model in which the proba-
bility of finding the ith particle at location r is given by Eq. (9).
The initial locations of the particles ri are preassigned. So
the probability distribution of the particles in the medium is
determined by

√
2D�t . The molecular volume of the medium

is given by V/N , where V is the volume of the medium.
When

√
2D�t � 3

√
V/N , only the cells that originally contain

particles, are likely to contain particles. Thus the probabil-
ity distribution of particles over space is discrete. At longer
timescales,

√
2D�t � 3

√
V/N , the overall probability density

of the particles in the medium is a constant, N/V .
In the medium with

√
2D�t � 3

√
V/N , which is a widely

used approximation [33,53,54], we can choose such a dis-
cretization that the volumetric probability distribution of ith
particle is entirely included in a cell indexed by I . For this
cell, there is always one particle inside the cell, i.e., NI = 1,
in all configurations. Thus 〈JJ〉NI =1 = 〈JJ〉.

The probability density of particles in a medium with√
2D�t � 3

√
V/N , i.e., the regime considered in this

manuscript, is considered to be a constant. So we can choose
any cell to calculate 〈JJ〉NI =1 without losing generality. The
cell indexed by I centered at the initial location ri of ith
particle is chosen for the calculation. Since the number of par-
ticles NJ in cell J only takes the value 1 or 0, the conditional
expectation of the current in cell J under the condition that
NI = 1 is given by

〈JJ〉NI =1 = PJ,NI =1〈JJ〉NI =1,NJ =1. (A22)

Here, PJ,NI =1 denotes the probability of NJ = 1 under the con-
dition NI = 1. Similarly, for the unconditional expectation, we
have

〈JJ〉 = PJ〈JJ〉NJ=1. (A23)

The difference between the conditional and unconditional ex-
pectation value of the current in cell J is given by

〈JJ〉NI =1 − 〈JJ〉
= �PJ〈JJ〉NJ=1 + (〈JJ〉NI =1,NJ =1 − 〈JJ〉NJ=1)PJ,NI =1.

(A24)

Here

�PJ ≡ PJ,NI =1 − PJ . (A25)

If the ith particle is in cell I , it cannot be in another cell J , so
we have

�PJ = −P(rJ , rI )VJ . (A26)

Here, VJ is the volume of the cell J and the probability
density P(rJ , rI ) can be calculated by Eq. (9). Assuming√

2D�t � λ, 〈JJ〉NJ=1 is a constant near cell I where �PJ �=
0. By the symmetry of P(rJ , rI ), we have [49,78]

Nc∑
J=1,rJ /∈PVI

↔
G(rI , rJ ) · �PJ〈JJ〉NJ=1 = 0. (A27)

For the second term in Eq. (A24), the difference between
〈JJ〉NI =1,NJ =1 and 〈JJ〉NJ=1 is caused by the field scattered from
the current in cell I to cell J , which is given by

〈JJ〉NI =1,NJ =1 − 〈JJ〉NJ=1 = ω2μ0αe0

↔
G(rJ , rI ) · 〈JI〉NI =1.

(A28)

We apply the equation above to Eq. (A24), then we apply
Eq. (A24) to the second term in Eq. (A21) to have

〈JI〉 = 〈Jinc
I 〉 + ω2μ0αe0PI

Nc∑
J=1,rJ /∈PVI

↔
G(rI , rJ ) · 〈JJ〉

+ ω2μ0αe0

↔
GII · 〈JI〉, (A29)

where

↔
GII = ω2μ0αe0

Nc∑
J=1,rJ /∈PVI

↔
G(rI , rJ ) · PJ,NI =1

↔
G(rJ , rI ).

(A30)

The third term in Eq. (A29) is the current induced in cell
I by the dipole fluctuation [52]. That is, when calculating
the second term in Eq. (A29), the overall probability density
of particles in the medium is considered to be a constant,
however, when calculating the second term in Eq. (A21),
the probability of a dipole existing in cell I is 1 instead of
the averaged probability N/V . This dipole fluctuation can
be combined into a renormalized polarizability [52] αe, thus
Eq. (A29) becomes

〈JI〉 = 〈
Jinc

I

〉′ + ω2μ0αePI

Nc∑
J=1,rJ /∈PVI

↔
G(rI , rJ ) · 〈JJ〉,

(A31)
where

αe = (I − ω2μ0αe0

↔
GII )−1αe0. (A32)

Here 〈Jinc
I 〉′ in Eq. (A31) is the current induced in cell I by the

incident field but with the renormalized polarizability αe. By
Eq. (A31), we have shown that the configurational-averaged
current can be solved self-consistently.

APPENDIX B: DISCRETIZATION OF A HALF-SPACE
INTO VOXELS

In this Appendix, we cluster the particles into voxels in
a manner consistent with generalized Foldy-Lax equations
presented in the paper. The whole space is divided into a
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FIG. 7. The discretization of the simulation region for the elec-
tric field calculation. The cross at the voxel center denotes the electric
field directed in x axis.

vacuum half-space and a medium half-space. The medium
half-space is discretized into voxels, in this paper, each con-
taining 15000 diffused particles, with a voxel size of 0.03λ ×
0.03λ × 0.03λ. Yee’s lattice [79,80] is used to separate the
electric and magnetic field calculation, given in Fig. 7. This
clustering allows us to reduce the Foldy-Lax equation given
in Eq. (12) to a voxel-based equation,

EI = Einc
I +

∑
J

↔
GIJ [ω2μ0αe1EJ + iω(∇ × αm1H)J ],

HI = Hinc
I +

∑
J

↔
GIJ [ω2ε0αm1HJ − iω(∇ × αe1E)J ]. (B1)

Here the polarizabilities of the voxel are approximated as
αe1 = ρ�V αe and αm1 = ρ�V αm, where ρ is the volume
number density of the particles and �V is the volume of the
voxel. In the limit that the particles form a continuous medium
in a half-space, a plane wave incident from the free-space side
will necessarily produce a plane wave in the medium half-
space. This allows us to simplify the equations by imposing
an assumption that the field on a medium side is a plane wave.
Thus the ŷ and ẑ components of all electric fields are omitted
as well as the x̂ and ẑ components of all magnetic fields, i.e.,
E ≈ x̂E and H ≈ ŷH . So Eq. (B1) becomes

x̂EI = x̂E inc
I +

∑
J

↔
GIJ x̂[ω2μ0ραeEJ − iωραm(∂zH )J ]�V,

(B2a)

ŷHI = ŷH inc
I +

∑
J

↔
GIJ ŷ[ω2ε0ραmHJ − iωραe(∂zE )J ]�V.

(B2b)

Appealing to Yee’s method, we allow J to take on half-
integer values to represent a field on the edge of the voxel
for the purposes of computing derivatives. The derivatives of
currents are calculated by the central difference method:

(∂zH )J = (
HJ+ 1

2
− HJ− 1

2

)/
�z,

(∂zE )J = (
EJ+ 1

2
− EJ− 1

2

)/
�z. (B3)

As we have assumed, the electric field propagates as a
plane wave E (z) ∝ eink0z and H (z) ∝ eink0z, where wave num-

ber is given by k0 = ω
√

ε0μ0 and n is the effective index of
refraction of the medium composed of the particles. Note that
as seen in Fig. 7, EJ is the field at the center of the voxel, and
the voxel is much smaller than the wavelength. Thus the field
on the edge of the voxel is given by

EJ± 1
2

≈ EJexp(±ink0�z/2) ≈ (1 ± ink0�z/2)EJ ,

HJ± 1
2

≈ HJexp(±ink0�z/2) ≈ (1 ± ink0�z/2)HJ . (B4)

Thus the derivatives are found to be

(∂zH )J ≈ ink0HJ , (∂zE )J ≈ ink0EJ . (B5)

Plugging the equations above into Eq. (B2) gives discretized
equations for the field calculation. Further simplification can
be achieved by disentangling the electric and magnetic field
calculations. The magnetic field can be eliminated from
Eq. (B2a) by making use of fact that H = E/(ηη0), and sim-
ilarly the electric field may be eliminated from Eq. (B2b) by
noting that E = ηη0H , where ηη0 is the wave impedance of
the propagation field.

APPENDIX C: THE PRECALCULATION OF dF

In this Appendix, we describe the strategy to find the
value of dF to balance the accuracy and running time of the
algorithm. Recall that dF is the distance scale that separates
elements that are in the far-field of each other and can thus be
clustered together at the lv1-lv2-lv3 clustering scheme from
elements that are in the near field of each other and must be
treated with the lv1-lv3 clustering scheme. The lv1-lv2-lv3
scheme is less computationally expensive, and so we choose it
when we can. Discretizing the lv3 column by a coarse mesh by
introducing the intermediate lv2 voxel reduces computational
complexity. However, the lv0-lv1-lv2-lv3 clustering is reliable
only if the difference between the fields scattered by all the lv1
voxels and by all the lv2 voxels in the same lv3 column can
be omitted.

We compare the electric field Esca
1 scattered from a column

composed by the lv1-lv2-lv3 clustering illustrated in Fig. 8(a)
with Esca

2 from a column composed by the lv1-lv3 clustering
illustrated in Fig. 8(b). The error is defined by the relative
difference between these two scattered fields along the z axis,
given by

ecol =
∣∣Esca

2 − Esca
1

∣∣∣∣Esca
1

∣∣ . (C1)

Both fields, Esca
1 and Esca

2 , are calculated by the second term
in Eq. (13). For the purpose of simplicity, only the x compo-
nents of the electric fields are considered because the y and z
components vanish. The calculated error is plotted in Fig. 8(c).
It can be observed that the difference between the two clus-
tering methods falls to negligible for distances between the
columns r such that r > 0.1λ. For r < 0.1λ, however, the
error of applying the lv2 voxel in the hierarchical clustering
process can not be neglected thus only lv1-lv3 clustering can
be chosen when calculating MIJ . Thus the condition distance
in Fig. 2 denoting the limit between far field and near field,
dF, is taken to be 0.1λ.
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FIG. 8. (a) A lv3 column composed of lv1 voxels. (b) A lv3
column composed of lv2 voxels. The electric fields scattered by both
structures are calculated along the straight line perpendicular to the
column on the yz plane, starting from the surface of the column.
(c) The relative difference between the scattered fields.

APPENDIX D: VALIDITY OF THE HIERARCHICAL
CLUSTERING

In this Appendix, we check the validity of the hierarchical
clustering procedure. We consider a plane wave with a wave
vector ẑnk0 propagating in a lv2 cube and calculate the far
field scattered by the cube, illustrated in Fig. 9(a), where the
refractive index n is acquired after the convergence of the
main algorithm. The hierarchical clustering process is reliable
if the fields in the far zone scattered by the clustered structures
at levels 0, 1, and 2 are all approximately equal, that is if
Esca

0 ≈ Esca
1 ≈ Esca

2 . The locations of the diffused particles
(i.e., lv0 voxels) are generated randomly inside and near the
lv2 box. The variance of particle diffusion 2D�t is taken to be
6 × 10−4λ2. (The value is approximated (with one significant
digit) with a diffusivity D = 2 × 10−5cm2/s corresponding
to the Brownian motion of air molecules dissolved in water
and a diffusion time �t = 4 ns, which is enough for the

2Much larger than the standard deviation of the Gaussian distribu-
tion of the particle diffusion

√
2D�t = 0.0245λ.

FIG. 9. (a) The model of simulating the fields scattered by lv0,
lv1, and lv2 structures and (b) the errors between Esca

0 and Esca
1 and

between Esca
0 and Esca

2 with different �L2 values. The scattered fields
are calculated in the far field region.

electromagnetic fields to reach to a stable distribution in the
simulated medium with a wavelength of 221 nm.) The par-
ticles located at the distance more than 0.15λ outside of the
lv2 box are ignored.2 The calculation of Esca

0 is given by the
second term in Eq. (12a). The detailed calculation method
including how to deal with the curl of the currents is given in
Appendix B. The fields scattered by the lv1 and lv2 structures,
Esca

1 and Esca
2 , are given as the second term on the right-hand

side of Eq. (13a), where the parameters n and η are given by
the simulation results.

The relative difference between the x component of the
electric fields scattered from the lv0 structures and from the
lv1 or lv2 structures are defined as

ex1,x2 =
∣∣Esca

x1,x2 − Esca
x0

∣∣∣∣Esca
x0

∣∣ . (D1)

The dependence of these clustering errors on D2, the size of
the lv2 voxel, is shown in Fig. 9(b). It can be observed that tak-
ing the lv2 side length, �L2, to be 0.03λ limits the clustering
error on the scattered electric field to be smaller than 0.3%,
which results in a maximum error of 0.6% in the simulated
refractive index according to Eq. (16). In applications where
the error of refractive index calculation is required to be lower
than 0.6%, a smaller sized lv2 cube should be chosen based
on Fig. 9(b) for the control of accuracy.
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